

www.truscience.ca

TRU Chemistry Contest Chemistry 11 Answers May 16, 2007 Time: 60 minutes

Please follow the instructions below. We will send your teacher a report on your performance. Top performers are eligible for prizes.

The contest consists of 25 multiple choice questions. You have 60 minutes to complete the test. All questions are of equal value, there is no particular order to the questions and there is no penalty for incorrect answers.

Please answer on the Scantron Answer Sheet. In the **top right hand corner** of the answer sheet, please **clearly print** the following information:

Your name (last name, first name), your school, your teacher

Indicate your answer on the Scantron answer sheet by marking one choice beside the question number. Mark only one answer for each question with a firm pencil mark, to fill the selected answer box. If you change your answer, be sure to completely erase your previous answer.

<u>Additional material</u>: The last page of the test contains a Periodic Table and the value of Avogadro's number. Any other useful information is included in the question.

Programmable calculators are not permitted

- 1. What volume of a 12.0 M stock solution of HCl(aq) is required to prepare 250.0 mL of a 0.500 M HCl(aq) solution?
 - (a) 2.44 mL
- \rightarrow (b) 10.4 mL
 - (c) 8.02 mL
 - (d) 11.5 mL
- 2. Aspirin, C₉H₈O₄ (Molar Mass 180.2 g/mol), a drug used to relieve minor aches and pains, is prepared by the following reaction:

$$C_7H_6O_3(s) + C_4H_6O_3(\ell) \longrightarrow C_9H_8O_4(s) + C_2H_4O_2(\ell)$$

If you need to prepare 45.0 g of aspirin, and the yield for the reaction is 85.0%, how many grams of salicylic acid, $C_7H_6O_3$ (Molar Mass 138.1 g/mol) must you use?

- (a) 44.9 g
- \rightarrow (b) 40.6 g
 - (c) 36.4 g
 - (d) 32.2 g
- 3. The electronic configuration 1s² 2s² 2p⁶ 3s² 3p⁶ represents the arrangement of the electrons in the:
- \rightarrow (a) potassium cation
 - (b) chlorine atom
 - (c) fluoride anion
 - (d) potassium anion
- 4. Which of the following describes a chemical change?
 - (a) the evaporation of water from the Thompson rivers
 - (b) the expansion of a helium balloon when heated
 - (c) the melting of butter on mashed potatoes
- \rightarrow (d) the rusting of iron

- 5. If 25.0 mL of a 0.150 M standard sulfuric acid solution is required to completely neutralize a 10.0 mL solution of lithium hydroxide, what is the molarity of the basic solution?
 - (a) $0.650\,\mathrm{M}$
 - (b) 0.375 M
 - (c) $0.975 \,\mathrm{M}$
- \rightarrow (d) 0.750 M
- 6. In the following reaction

$$3\,(NH_4)_2CO_3(aq) \ + \ 2\,Al(NO_3)_3(aq) \ \to \ Al_2(CO_3)_3(s) \ + \ 6\,NH_4NO_3(aq)$$

what mass of aluminum carbonate (Molar Mass 204 g/mol) would precipitate if 2.50 g of ammonium carbonate (Molar Mass 86.1 g/mol) reacts completely?

- (a) 17.8 g
- (b) 5.92 g
- \rightarrow (c) 1.97 g
 - (d) 2.50 g
- 7. A chemistry student has taken a series of measurements for the mass of a block of metal. The separate measurements are: 100.3 g, 100.2 g, and 100.1 g. What is the precision of the measurement?
 - (a) good to 1/10000
- \rightarrow (b) good to 1/1000
 - (c) good to 1/100
 - (d) good to 1/10
- 8. Aluminum oxide is an ionic compound. Calculate the number of aluminum ions (Al³⁺) and oxide ions (O²⁻) that are in a 51 g sample of aluminum oxide?
- \rightarrow (a) $6.0 \times 10^{23} \text{ Al}^{3+} \text{ ions and } 9.0 \times 10^{23} \text{ O}^{2-} \text{ ions}$
 - (b) $3.0 \times 10^{23} \text{ Al}^{3+} \text{ ions and } 2.0 \times 10^{23} \text{ O}^{2-} \text{ ions}$
 - (c) $9.0 \times 10^{23} \text{ Al}^{3+} \text{ ions and } 6.0 \times 10^{23} \text{ O}^{2-} \text{ ions}$
 - (d) $3.0 \times 10^{23} \text{ Al}^{3+} \text{ ions and } 4.0 \times 10^{23} \text{ O}^{2-} \text{ ions}$

9.	Calcium phosphate, Ca ₃ (PO ₄) ₂ , occurs naturally and can made by the	e
	following reaction:	

$$Na_3PO_4 + CaCl_2 \rightarrow NaCl + Ca_3(PO_4)_2$$

The coefficients for Na₃PO₄ and Ca₃(PO₄)₂, respectively, in the balanced equation, are:

- (a) 6, 3
- (b) 1, 2
- (c) 3, 6
- \rightarrow (d) 2, 1
- 10. Dimethylhydrazine, the fuel used in rocket propulsion systems, is made of carbon, hydrogen and nitrogen atoms. A 2.859 g sample of the compound is burned in excess air, and it produces 4.190 g of carbon dioxide and 3.428 g of water. What is the empirical formula? (Molar Masses: $CO_2 = 44.01$ g/mol; $H_2O = 18.02$ g/mol)
 - (a) C_2H_4N
 - (b) CH_4N_2
 - (c) $C_4H_2N_2$
- \rightarrow (d) CH₄N
- 11. How many single covalent bonds must a silicon atom form in order to have a complete octet in its valence shell?
- \rightarrow (a) 4
 - (b) 3
 - (c) 2
 - (d) 1
- 12. A 15% by mass solution has a density of 1.2 g/mL. What is the mass per liter concentration of this solution?
- \rightarrow (a) 180 g/L
 - (b) 150 g/L
 - (c) 125 g/L
 - (d) cannot be determined from this information

- 13. Naturally occurring copper (Cu) consists of two isotopes and has an atomic mass of 63.56 g/mol. One of the isotopes has a mass of 62.93 g mol⁻¹ and an abundance of 69.09%. What is the atomic mass of the other isotope?
 - (a) 63.56 g/mol
 - (b) 66.93 g/mo
 - (c) 62.12 g/mol
- \rightarrow (d) 64.96 g/mol
- 14. Formaldehyde, H₂CO, is a gas with a pungent smell and is used to preserve biological specimens. Which of the following structures represents the correct Lewis structure for formaldehyde?

15. A chemist reacts 3.012 g of Mg metal with 50.0 mL of 3.00 M HCl(aq) to produce hydrogen gas. Assuming the reaction goes to completion, how many moles of which reactant will be left over?

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

- (a) 0.049 mol of HCl
- \rightarrow (b) 0.049 mol of Mg
 - (c) 0.0026 mol of Mg
 - (d) 0.0026 mol of HCl
- 16. Identify the type of bonding you would expect in the following:

$$(i)\ Ni(s),\ (ii)\ MgO(s),\ (iii)\ HCl(g)$$

- (a) (i) metallic, (ii) covalent, (iii) ionic
- (b) (i) ionic, (ii) covalent, (iii) metallic
- (c) (i) covalent, (ii) metallic, (iii) ionic
- \rightarrow (d) (i) metallic, (ii) ionic, (iii) covalent

17. The following table lists the names and corresponding formulae of a number of compounds. Some lines in the table contain errors.

i	lead(II) carbonate	PbCO ₃
ii	nickel(III) sulfide	Ni_3S_2
iii	beryllium chlorate	$Be(ClO_3)_2$
iv	diphosphorous trioxide	P_2O_3
V	barium hydroxide octahydrate	$Ba(OH) \cdot 8H_2O$
vi	gold(I) hypochlorite	AuClO

The lines which are **completely correct** are:

- (a) i, ii, iv, v
- (b) ii, iv, v, vi
- \rightarrow (c) i, iii, iv, vi
 - (d) i, iii, iv, v

18. A compound is found to have the following percentage composition by mass: 30.57% carbon, 3.83 % hydrogen, 45.22% chlorine, 20.38% oxygen. Based on a molar mass of 157.0 g, what is the molecular formula of this compound?

- (a) $C_6H_6Cl_2O$
- (b) $C_5H_{11}Cl_2O$
- \rightarrow (c) $C_4H_6Cl_2O_2$
 - (d) $C_4H_{12}ClO_4$

19. The following reaction between lead sulfide and hydrogen peroxide is used to carefully clean oil paintings that have blackened due to the reaction of the lead-based paints with atmospheric hydrogen sulfide:

$$PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$$

If a painting had originally been covered with 9.6 g of PbS and you had 3.0 g of H_2O_2 , what percentage of the PbS could be removed from the painting?

- \rightarrow (a) 55 %
 - (b) 100 %
 - (c) 84 %
 - (d) 45 %

20.	What is the molar concentration of ethanol in a 5.0 % by volume mixture of ethanol in water? The density of pure ethanol is 0.78 g/mL and its molar mass is 46.08 g/mol.
\rightarrow	(a) 0.85 M

- 21. Which of the following will have the highest solubility in water?
- $(a) O_2$ $\rightarrow (b) MgCl_2$
 - (c) Al (d) C₃H₈
- 22. The Montreal Protocol effectively reduced the use of chlorofluorocarbons (CFCs) and manufacturers have developed hydrofluorocarbons (HFCs) as an alternative. HFC-134a is a popular one, with the formula $C_2H_2F_4$. The percent fluorine by mass in HFC-134a is:
 - (a) 18.62 %
 - (b) 37.24 %
 - (c) 55.86 %
- \rightarrow (d) 74.48 %
- 23. The total number of valence electrons in one $S_4O_6^{2-}$ ion is:
- \rightarrow (a) 62
 - (b) 112
 - (c) 60
 - (d) 114

24. The selected functional groups in the following molecule are:

- (a) ketone, alkyne, amide
- (b) amine, alkene, ketone
- (c) alkyne, amide, ester
- \rightarrow (d) alkyne, ketone, amine

25. The approximate bond angles indicated by the labels **A** and **B** in the structure of the amino acid alanine

$$H_3C$$
 H_2N-C
 H
 A
 OH

are:

- (a) $A = 90^{\circ}$ and $B = 180^{\circ}$
- \rightarrow (b) A = 120° and B = 109°
 - (c) $A = 109^{\circ}$ and $B = 109^{\circ}$
 - (d) $A = 120^{\circ}$ and $B = 180^{\circ}$

The End

Data Page

Avogadro's Number = 6.022×10^{23} /mol

1	2	3	4		5	6		7	8		9	10	0	11		12	13)	14	15	16	17	18
1A	2A	3A	4A		5A	6A		7A			8A			1B	3	2B	3E	3 (4B	5B	6B	7B	8B
1																							2
H 1.008																							He 4.003
3	4																5	- 1	6	7	8	9	10
Li	Be																B			N	Ö	F	Ne
6.941	9.012																10.			14.007	15.999	18.998	20.179
11	12																13		14	15	16	17	18
Na 22.99	Mg 24.305																Al 26.		Si 28.086	P 30.974	S 32.066	Cl 35.453	Ar 39.948
19	20	21	22		23	24		25	26		27	28	3	29		30	31		32	33	34	35	36
K	Ca	Sc	Ti		V	Cr		Mn	Fe		Co	N		Cu		Zn	Ga		Ge	As	Se	Br	Kr
39.098	40.078	44.956			50.94 41	2 51.9 42	96	54.938 43	_		58.933	46	6.69	63.5		65.39	69.			74.9216 51	78.96	79.904 53	83.80 54
37 Rb	Sr	39 Y	40 Z r		Nb	42 Ma		43 Tc	44 R u		45 Rh	P(-	47		48 Cd	49 In			Sb	52 Te	33 I	Xe
85.468	87.62	88.906			92.90			ис (98)	101		102.91		u)6.42	Ag		112.41	114		_	121.76	127.60	126.90	131.29
55	56	57	72		73	74		75	76		77	78	3	79		80	81	;	82	83	84	85	86
Cs	Ba	La*	Hf		Ta	W		Re	Os		Ir	Pt	t	Au	ı :	Hg	Tl]	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178		180.9			186.21	190		192.22	19	5.08	196	.97	200.59	204	1.38	207.2	208.98	(209)	(210)	(222)
87 E-	88 D	89	104		105	106		107	103	_	109												
Fr (223)	Ra 226.03	Ac** 227.03			Db (262)	Sg (263		Bh (262)	(26:		Mt (266)												
(223)	220.03	227.02	(20)	58	` (59	60			62	6	3	64		65	66		67	68	69	70	71	1
			*	Ce		Pr	No	d P	oma.	Sm	E	u	Gd		Tb	Dy		Ho	Er	Tm	Yb	Lu	
				140).12	140.91	144	4.24 (1	145)	150.	50.36 151		157.	25	158.93	3 162.	50	164.93	167.26	168.93	3 173.04	174.97	
				90		91	92	9	3	94		5	96		97	98		99	100	101	102	103	
			**		- 1	Pa U		Np		Pu				Cm Bk				Es	Fm	Md	No	Lr	
					2.04	231.04	238	3.03 2	37.05	(244	(244) (243)		(247)		(247) (251))	(252)	(257)	(258)	(259)	(260)	_